Let us note down the list of all limit formulas. Here we will list all the important limit formulas and see how to apply such formulas in practical examples.
Limit Formulas with Properties and Applications
Notation and Definition:
Let f(x) be a function of x. The limit of f(x) as x goes to a (x→a) is denoted by the symbol:
limx→a f(x).
We say that the limit limx→a f(x) exists if limx→a-0 f(x) = limx→a+0 f(x), that is, f(a-0)=f(a+0).
In other words, the above limit exists if the left-hand side limit is equal to the right-hand side limit. This way one can check whether the limit exists or not.
Binomial Theorem on Limit Formula
limx→a$\dfrac{x^n-a^n}{x-a}$ = nan-1.
limit Formulas for Trigonometric Functions
1. limx→0 sin x =0
2. limx→0 cos x =1
3. limx→0 tan x =1
4. limx→0$\dfrac{\sin x}{x}$ = 1
5. limx→0$\dfrac{\tan x}{x}$ = 1
6. limx→0$\dfrac{\sin^{-1} x}{x}$ = 1
7. limx→0$\dfrac{\tan^{-1} x}{x}$ = 1
8. limx→0 $\dfrac{1-\cos x}{x}$ = 0
Limit Formulas for Logarithmic and Exponential Functions
1. limx→0 ex =1
2. limx→0 log x =1
3. limx→0 $\dfrac{e^x-1}{x}$ =1
4. limx→0 $\dfrac{a^x-1}{x}$ = loge a
5. limx→0 $\dfrac{\log(1+x)}{x}$ =1
6. limx→0 $(1+x)^{\dfrac{1}{x}}$ = e
7. limx→∞ $(1+\dfrac{1}{x})^x$ = e
8. limx→∞ $(1+\dfrac{n}{x})^x$ = en
Properties of Limits
Let $f(x)$ and $g(x)$ be two functions of x such that both the limits $\lim\limits_{x \to a} f(x)$ and $\lim\limits_{x \to a} g(x)$ exist.
Limit of a constant: $\lim\limits_{x \to a} c=c$ (c is a constant)
Addition Rule of limits: $\lim\limits_{x \to a}[f(x)+g(x)]=$ $\lim\limits_{x \to a}f(x)+ \lim\limits_{x \to a} g(x)$. This is also known as the sum rule of limits.
Subtraction Rule of limits: $\lim\limits_{x \to a}[f(x)-g(x)]=$ $\lim\limits_{x \to a}f(x)-\lim\limits_{x \to a} g(x)$. This is also known as the difference rule of limits.
Product Rule of limits: $\lim\limits_{x \to a}f(x)g(x)=\lim\limits_{x \to a}f(x) \lim\limits_{x \to a} g(x)$. This is also known as the multiplication rule of limits.
Quotient Rule of Derivatives: $\lim\limits_{x \to a}\dfrac{f(x)}{g(x)}=\dfrac{\lim\limits_{x \to a}f(x)}{\lim\limits_{x \to a} g(x)} ,$ provided that $\lim\limits_{x \to a} g(x) ne 0$. This is also known as the division rule of limits.
Examples of Limits
Now we will see some examples as an application of the above formulas.
Example 1: Evaluate $\lim\limits_{x \to 5} x^2$
Solution: $\lim\limits_{x \to 5} x^2= \lim\limits_{x \to 5} x \cdot x$
$= \lim\limits_{x \to 5} x \cdot \lim\limits_{x \to 5} x$
$= 5 \cdot 5$
$=25$ (application of product rule of limits)
Example 2: Find $\lim\limits_{x \to 1} (3x^2+4)$
Solution:
$\lim\limits_{x \to 1} (3x^2+4)=\lim\limits_{x \to 1}3x^2 + \lim\limits_{x \to 1}4$
$=3 \lim\limits_{x \to 1}x^2 + \lim\limits_{x \to 1}4$
$=3 \lim\limits_{x \to 1} x \cdot x + \lim\limits_{x \to 1} 4$
$=3 (1 \cdot 1)+4$
$=3+4=7$
Example 3: Find $\lim\limits_{x \to 0} \dfrac{\sin 2x}{x}$
Solution: Put z=2x. Then z→0 as x→0.
∴ $\lim\limits_{x \to 0} \dfrac{\sin 2x}{x}$ $=\lim\limits_{x \to 0} 2 \cdot \dfrac{\sin 2x}{2x}$
$=2\lim\limits_{z \to 0} \dfrac{\sin z}{z}$
$=2 \cdot 1=2$
FAQs
Q1: How to find all limit formulas?
Answer: All limit formulas are available at www.imathist.com