Here, we will find the derivative of root x+1/root x with respect to x. In the end, we will also evaluate this derivative at x=1.
For more details of square roots, please click on the page Square Root of x: Definition, Symbol, Graph, Properties, Derivative, Integration
Root(x)+1/Root(x) Derivative
Question: Find the derivative of $\sqrt{x}+\frac{1}{\sqrt{x}}$
Answer:
At first, we will rewrite the given quantity $\sqrt{x}+\frac{1}{\sqrt{x}}$ using the rule of exponents. So we have
$\sqrt{x}+\frac{1}{\sqrt{x}}$
$=x^{1/2}+\frac{1}{x^{1/2}}$
$=x^{1/2}+x^{-1/2}$ …(i)
Thus, the desired derivative is
$=\dfrac{d}{dx}(\sqrt{x}+\frac{1}{\sqrt{x}})$
$=\dfrac{d}{dx}(x^{\frac{1}{2}}+x^{-\frac{1}{2}})$ by (i)
$=\dfrac{d}{dx}(x^{\frac{1}{2}})+\frac{d}{dx}(x^{-\frac{1}{2}})$
$=\dfrac{1}{2} x^{\frac{1}{2} -1} -\frac{1}{2} x^{-\frac{1}{2} -1}$
[by the power rule of derivatives $\frac{d}{dx}(x^n) = nx^{n-1}$]
$=\dfrac{1}{2} x^{-\frac{1}{2}} -\frac{1}{2} x^{-\frac{3}{2}}$
$=\dfrac{1}{2} [\frac{1}{x^{\frac{1}{2}}} – \frac{1}{x^\frac{3}{2}}]$
$=\dfrac{1}{2} [\frac{1}{x^{\frac{1}{2}}} -\frac{1}{x.x^{\frac{1}{2}}}]$
$=\dfrac{1}{2} [\frac{1}{\sqrt{x}} -\frac{1}{x\sqrt{x}}]$
$=\frac{1}{2\sqrt{x}} [1 -\frac{1}{{x}}]$
So the derivative of rootx+1/rootx is $=\frac{1}{2\sqrt{x}} [1 -\frac{1}{{x}}]$, that is,
d/dx(√x+1/√x) = (1/2√x) [1 -1/x].
Also Read:
Question: Find the derivative of $\sqrt{x}+\frac{1}{\sqrt{x}}$ at $x=1$
Answer:
We have obtained the derivative of root x +1/root x above. So putting $x=1$ in the above derivative, we will get the answer.
$\dfrac{d}{dx}[\sqrt{x}+\frac{1}{\sqrt{x}}]$ at $x=1$
$=\frac{1}{2\sqrt{x}} [1 -\frac{1}{x}]$ at x=1
$=\frac{1}{2\sqrt{1}} [1 -\frac{1}{1}]$
$=\dfrac{1}{2}[1-1]$
$=0$
Derivative of root x -1
The derivative of root(x)-1 is equal to
$\dfrac{d}{dx}(\sqrt{x}-1)$ $=\dfrac{d}{dx}(\sqrt{x}) – \dfrac{d}{dx}(1)$
$=\dfrac{1}{2} x^{\frac{1}{2} -1}-0$ as the derivative of a constant is zero.
$=\dfrac{1}{2}x^{-\frac{1}{2}}$
$=\frac{1}{2\sqrt{x}}$
Related Keywords:
√x+1/√x differentiate | root x + 1/root x differentiation | derivative of root x + 1 by root x
FAQs
Q1: Find the derivative of rootx+1/rootx.
Answer: The derivative of rootx+1/rootx is equal to $=\frac{1}{2\sqrt{x}} [1 -\frac{1}{{x}}]$.