The limit of (x^n-1)/(x-1) as x approaches 1 is equal to n, that is, limx→1 (xn-1)/(x-1) = n. This follows from the formula
limx→a (xn-an)/(x-a) = n⋅an-1
Put a=1, so we get that
limx→1 $\dfrac{x^n-1}{x-1}$ = n.
Let us now prove this limit formula.
What is the Limit of (x^n-1)/(x-1)
Answer: limx→1 (xn-1)/(x-1) is equal to n. |
Explanation:
First, we apply the binomial formula:
xn-1 = (x-1) (xn-1+xn-2+…+x+1).
Thus, the given limit
limx→1 (xn-1)/(x-1)
= limx→1 $\dfrac{(x-1)(x^{n-1}+\cdots+x+1)}{x-1}$
= limx→1 (xn-1+xn-2+…+x+1)
= 1n-1+1n-2+…+1+1
= 1+1+…+1+1 {n times}
= n.
So the limit of (xn-1)/(x-1) is equal to n when x tends to 1.
Limit of (xn-1)/(x-1) using L’Hôpital’s Rule
The limit of (xn-1)/(x-1) when x→1 can be computed using the L’Hôpital’s rule as it is an intermediate form (0/0).
Therefore,
limx→1 (xn-1)/(x-1)
= limx→1 $\dfrac{\frac{d}{dx}(x^n-1)}{\frac{d}{dx}(x-1)}$
= limx→1 $\dfrac{nx^{n-1}}{1}$
= $n \times 1^{n-1}$
= n × 1
= n.
Hence we have shown that the limit of (xn-1)/(x-1) is n when x goes to 1, i.e., limx→1 (xn-1)/(x-1) = n.
Question-Answer
Question: Find limx→1 (x2n-1)/(x-1)
Answer:
limx→1 (x2n-1)/(x-1) = limx→1 $\dfrac{\frac{d}{dx}(x^n-1)}{\frac{d}{dx}(x-1)}$ = limx→1 $\dfrac{2nx^{2n-1}}{1}$ ⇒ limx→1 (x2n-1)/(x-1) = $2n \times 1^{2n-1}$ ⇒ limx→1 (x2n-1)/(x-1) = 2n. Thus the limit of (x2n-1)/(x-1) when x tends to 1 is equal to 2n. |
Have You Read These Limits?
FAQs
Q1: What is limx→1 (xn-1)/(x-1)?
Answer: The value of the limit limx→1 (xn-1)/(x-1) is equal to n.