Integration of root tanx + root cotx | Find ∫(√tanx+√cotx) dx
The integration of root tanx + root cotx is equal to √2sin-1(sinx−cosx)+C. Here we learn how to integrate √tanx+√cotx. The integral formula of $\sqrt{\tan x}+\sqrt{\cot x}$ is given by $\int (\sqrt{\tan x}+\sqrt{\cot x}) dx$ = $\sqrt{2}\sin^{-1}(\sin x -\cos x)+C$. Find ∫(√tanx+√cotx) dx $\int (\sqrt{\tan x}+\sqrt{\cot x}) dx$ = $\int \Big(\dfrac{\sqrt{\sin x}}{\sqrt{\cos x}}+\dfrac{\sqrt{\cos x}}{\sqrt{\sin x}} \Big) … Read more