Maclaurin series of sinx | Taylor series of sinx
The Maclaurin series expansion of sinx or the Taylor series expansion of sinx at x=0 is given as follows: $\sin x= \sum_{n=0}^\infty \dfrac{(-1)^n}{(2n+1)!}x^{2n+1}$ $=x-\dfrac{x^3}{3!}+\dfrac{x^5}{5!}-\cdots$ Taylor Series Expansion of Sinx at x=0 We know that the Maclaurin series expansion of $\sin x$ or the Taylor series of a function $f(x)$ at $x=0$ is given by the … Read more