The simplification of cos3x -sin3x is equal to cos3x -sin3x = (cosx -sinx)(2+sin2x)/2. The formula of cos^3x +sin^3x is given as follows:
cos3x +sin3x = $\dfrac{(\cos x +\sin x)(2-\sin 2x)}{2}$.
Formula of cos3x -sin3x
Prove that cos3x -sin3x = (cosx -sinx)(2+sin2x)/2.
Solution:
Applying the formula a3 -b3 = (a -b)(a2+ab+b2), we get that
cos3x -sin3x = (cosx -sinx) (cos2x +cosx sinx + sin2x)
= (cosx -sinx) (cos2x + sin2x +cosx sinx)
= (cosx -sinx) (1+ $\dfrac{2\cos x \sin x}{2}$) by the identity cos2x + sin2x =1.
= (cosx -sinx) (1+ $\dfrac{\sin 2x}{2}$) by the formula sin2x = 2sinx cosx.
= $\dfrac{(\cos x -\sin x)(2+\sin 2x)}{2}$.
So the formula of cos3x -sin3x is given by cos3x -sin3x = (cosx -sinx)(2+sin2x)/2.
Read Also: Formula of cos4x +sin4x
Simplify cos3x +sin3x
Prove that cos3x +sin3x = (cosx +sinx)(2-sin2x)/2.
Solution:
By using the formula a3 +b3 = (a +b)(a2 -ab+b2), it follows that
cos3x +sin3x = (cosx +sinx) (cos2x -cosx sinx + sin2x)
= (cosx +sinx) (cos2x + sin2x -cosx sinx)
= (cosx +sinx) (1- $\dfrac{2\cos x \sin x}{2}$)
= (cosx +sinx) (1- $\dfrac{\sin 2x}{2}$)
= $\dfrac{(\cos x +\sin x)(2-\sin 2x)}{2}$.
So the formula of cos3x +sin3x is given by cos3x +sin3x = (cosx +sinx)(2-sin2x)/2.
You Can Read: Sin3x Formula | Cos3x Formula
Sin(a+b) Sin(a-b) Formula, Proof
FAQs
Q1: What is the identity of cos^3x-sin^3x?
Answer: The identity of cos3x -sin3x is given by cos3x -sin3x = (cosx -sinx)(2+sin2x)/2.
Q2: What is the identity of cos^3x + sin^3x?
Answer: The identity of cos3x +sin3x is given by cos3x +sin3x = (cosx +sinx)(2-sin2x)/2.