The integral of $\sqrt{1-x^2}$ is equal to $\dfrac{x}{2} \sqrt{1-x^2}$ $+\dfrac{1}{2}$ sin-1 x+C. Here we will learn how to integrate square root of 1-x2.
The integral formula of root 1-x^2 is provided below: $\int \sqrt{1-x^2} dx$ $=\dfrac{x}{2} \sqrt{1-x^2}$ $+\dfrac{1}{2}$ sin-1 x+C. |
Integration of $\sqrt{1-x^2}$
Question: How to Integrate Root (1-x^2)?
That is, find $\int \sqrt{1-x^2} dx$.
Solution:
Let x = sint.
So dx = cost dt
Also, we have
- sin2t = 2sint cost = 2sint $\sqrt{1-\sin^2t}$ = 2x$\sqrt{1-x^2}$ …(∗)
- t = sin-1x …(∗∗)
Now, $\int \sqrt{1-x^2} dx$
= $\int \sqrt{1-\sin^2t} \cos t \,dt$
= $\int \cos^2 t \, dt$ as we know cos2θ=1-sin2θ
= $\dfrac{1}{2}\int 2\cos^2 t \,dt$
= $\dfrac{1}{2}\int (1+\cos 2t) dt$ as 1+cos2θ = 2cos2θ.
= $\dfrac{1}{2} \big(t+\dfrac{\sin 2t}{2} \big)$+C
= $\dfrac{1}{2} \big(\sin^{-1}x+\dfrac{2x\sqrt{1-x^2}}{2} \big)$+C, using Equations (∗) and (∗∗).
= $\dfrac{x}{2} \sqrt{1-x^2}$ $+\dfrac{1}{2}$sin-1 x+C.
So the integration of $\sqrt{1-x^2}$ is equal to $\int \sqrt{1-x^2} dx$ $=\dfrac{x}{2} \sqrt{1-x^2}$ $+\dfrac{1}{2}$ sin-1 x+C, where C is an integration constant.
Have You Read These?
Integration of $\sqrt{a^2+x^2}$
Integration of $\sqrt{a^2-x^2}$
FAQs
Q1: What is the integration of sqrt{1-x^2}?
Answer: The integration of square root of 1-x^2 is equal to $\dfrac{x}{2} \sqrt{1-x^2}$ $+\dfrac{1}{2}$ sin-1 x+C, where C is an arbitrary constant.