In this post, we will prove tanx + tany + tanz = tanx tany tanz when x+y+z is equal to π. Here we will use the following formula:
tan(x+y) = $\dfrac{\tan x+\tan y}{1-\tan x \tan y}$.
Question: If x+y+z=π, then prove that tanx + tany + tanz = tanx tany tanz.
Solution:
Given that x+y+z=π.
⇒ x+y = π-z
So tan(x+y) = tan(π-z)
⇒ $\dfrac{\tan x+\tan y}{1-\tan x \tan y}$ = – tan z
⇒ tanx + tany = – tanz (1- tanx tany)
⇒ tanx + tany = – tanz + tanx tany tanz
⇒ tanx + tany + tanz = tanx tany tanz.
Hence, we have shown that if x+y+z=π, then tanx + tany + tanz = tanx tany tanz.
More Problems:
Sin3x formula in terms of sinx
FAQs
Q1: If x+y+z=π, then what is the value of tanx + tany + tanz?
Answer: If x+y+z=π, then the value of tanx + tany + tanz is equal to tanx tany tanz.