If y=sin(x+y), then dy/dx= cos(x+y)/[1-cos(x+y)]. Here, we learn how to differentiate y=sin(x+y) with respect to x. Let us find the derivative of y=sin(x+y).
y=sin(x+y), Find dy/dx
Question: If y=sin(x+y), then $\dfrac{dy}{dx}$.
Solution:
Given, y = sin(x+y).
To find dy/dx, we will differentiate both sides of the equation y=sin(x+y) with respect x. Using the chain rule, we get that
$\dfrac{dy}{dx}$ = $\cos(x+y)\dfrac{d}{dx}(x+y)$
⇒ $\dfrac{dy}{dx}$ = $\cos(x+y)(1+\dfrac{dy}{dx})$
Solving the above equation for dy/dx, it follows that
$\dfrac{dy}{dx}$ = $\cos(x+y)+\cos(x+y)\dfrac{dy}{dx}$
⇒ $\dfrac{dy}{dx} – \cos(x+y)\dfrac{dy}{dx}$ = $\cos(x+y)$
⇒ $[1-\cos(x+y)]\dfrac{dy}{dx}$ = $\cos(x+y)$
⇒ $\dfrac{dy}{dx} = \dfrac{\cos(x+y)}{1-\cos(x+y)}$.
So we conclude that if y=sin(x+y), then dy/dx= cos(x+y)/[1-cos(x+y)].
Related Questions:
What is the derivative of root sin x
FAQs
Q1: If y=sin(x+y), then find dy/dx.
Answer: If y=sin(x+y), then dy/dx= cos(x+y)/[1-cos(x+y)].