In this post, we will find the integral of root(a2-x2). The integration of square root of a2-x2 is given as follows
∫ √(a2-x2) dx = x/2 ⋅ √(a2-x2) + a2/2 sin-1(x/a) + C, where C is an integration constant.
Integration of $\sqrt{a^2-x^2}$
Let $I = \int \sqrt{a^2-x^2} dx$ $\cdots (I)$
We will find the integration of the square root of a2-x2 using the integration by parts formula. The formula says that if f(x), g(x) are two functions then the integration of f(x)g(x) is given by
$\int f(x)g(x) dx$ $=f \int g dx$ $-\int \big[\dfrac{df}{dx} \int g dx \big]dx$ $\cdots (\star)$
Put $f(x)=\sqrt{a^2-x^2}$ and $g(x)=1$.
Now,
∫g(x) dx = ∫1 dx = x |
and
$\dfrac{d}{dx}(f(x))=\dfrac{d}{dx}(\sqrt{a^2-x^2})$ $=\dfrac{d}{dx}((a^2-x^2)^{1/2})$ $=\dfrac{1}{2}(a^2-x^2)^{1/2-1}\cdot \dfrac{d}{dx}(a^2-x^2)$ by the chain rule and power rule of derivatives. $=\dfrac{-x}{\sqrt{a^2-x^2}}$ |
Now, using the formula $(\star)$, the integral of root(a^2-x^2) is
I = $\int \sqrt{a^2-x^2} dx = \int \sqrt{a^2-x^2} \cdot 1 dx$
= $\sqrt{a^2-x^2} \cdot x$ $-\int \dfrac{-x}{\sqrt{a^2-x^2}} \cdot x dx$
= $x\sqrt{a^2-x^2}$ $-\int \dfrac{a^2-x^2-a^2}{\sqrt{a^2-x^2}}$
= $x\sqrt{a^2-x^2}-\int \sqrt{a^2-x^2} dx$ $+a^2 \int \dfrac{dx}{a^2-x^2}$
Therefore,
I = $x\sqrt{a^2-x^2}-I$ $+a^2 \int \dfrac{dx}{a^2-x^2}$
⇒ 2I = $x\sqrt{a^2-x^2}$ $+a^2 \int \dfrac{dx}{a^2-x^2}$
⇒ 2I = $x\sqrt{a^2-x^2}$ $+a^2 \sin^{-1} \dfrac{x}{a}+C$
∴ The integral of root a2-x2 is equal to $\dfrac{x}{2} \sqrt{a^2-x^2}$ $+\dfrac{a^2}{2}\sin^{-1} \dfrac{x}{a}+C$, where C is an integration constant.
Application
Using the above formula, we can easily find the integral of square root of 4-x2.
Put a=2 in the above formula.
So the integration of root 4-x2 is equal to
∫ $\sqrt{4-x^2} dx$ $=\dfrac{x}{2} \sqrt{4-x^2}$ +2 sin-1(x/2) +C.
Have You Read These?
Integration of log(sinx) from 0 to pi/2
Derivative & integration of 1/root(x)
FAQs
Q1: What is the integration of square root of a2-x2?
Answer: The integration of square root of a2-x2 is equal to ∫√(a2-x2) dx = x/2 ⋅ √(a2-x2) + a2/2 sin-1(x/a)+C where C is an integration constant.